Centre for Biofuels and Bioenergy Studies (CBBS)

SCHOOL OF TECHNOLOGY PANDIT DEENDAYAL PETROLEUM UNIVERSITY GANDHINAGAR

Sponsored by GEDA

 Financial Assistance received from GEDA (Ref: GEDA/SOL-SRDC/2014/3/OW/6689 dated March 26, 2014)

CBBS Activities

Focus on:

- Biodiesel
- Biomass
- Biomass derived fuels and related areas

The CBBS is working on:

- To contribute research in the growth of biofuels,
- Provide platform for scientific and research community, industry and government to accelerate both in the energy farming and efficient production of bioenergy derived biofuels.

Specific Objectives

- Design, Development and Fabrication of energy efficient, eco-friendly, and industrially viable technology for biodiesel production.
- Application of locally available non-edible oil feed stocks of non-edible oils [such as <u>Castor</u>, Jatropha, Thumba, Tobacco and <u>Waste cooking oil</u> etc.]
- Determination of <u>optimal process parameters and process</u> <u>standardization</u>
- Create social awareness of biodiesel resources available in Gujarat, and demonstration of biodiesel production among students (UG/PG and PhD) and nearby villagers/farmers through workshops and seminars.

List of Instruments procured (B)

Name of Instrument	Manufacturer	
Bomb calorimeter	IKA, USA	
Flash point apparatus	Anton paar, India	
Oxidation stability test unit	Metrohm, USA	
potentiometric auto titrator	Metrohm, Switzerland	
brookfield viscometer	field viscometer Brrokfield, USA	
Schimadzu Balance	Schimadzu, Japan	
Remi research centrifuge	Remi, India	
Digital smoke analyzer	Indus scientific pvt ltd, Bangalore	
Multi gas analyzer	Indus scientific pvt ltd, Bangalore	

Supercritical Autoclave

Hydrodynamic Cavitation

Hybrid (Ultrasound and Microwave)
Reactor

Mixer Grinder

Pure Lab Water Purification System

Centrifuge (Remi)

Potentiometric Auto Titrator (Metrohm)

Professional Biodiesel Rancimat (Metrohm)

Pensky Marten Flash Point Apparatus

Bomb Calorimeter (IKA)

Brookfield Viscometer

Precision Weighing Balance (Schimadzu)

Ongoing R & D activities at CBBS

Limitations of conventional biodiesel production technique in industry

- Higher reaction time
- High energy consumption
- Catalyst requirement (Pollution and contamination)
- Lower yield of biodiesel
- Limitations of batch size
- Costly

Proposed advanced Technologies working on

- Simple Conventional Reactor with Stirrer
- Ultrasound Test Rig Horn type (20 kHz to 40 khz)
- Ultrasound Test Rig Bath type
- Hydrodynamic Cavitation Setup
- Microalgae Reactors
- Supercritical Methanol Test Rig
- Reactive distillation column Technology
- Hybrid Pilot Plant for Biodiesel Production
- Computerized Diesel Engine Test Rig
- Softwares

PI Techniques <u>developed at CBBS</u> for Biodiesel Production

Techniques	Status	Feature	
Ultrasound Assisted Intensification	■ Developed	Energy efficientSuitable for small/mediumscale	
Microwave Assisted Intensification	■ Developed	Energy efficientSuitable for small/mediumscale	
Hybrid Technology (microwave+ultrasound)	Developed,Scalability and continuous production study in progress*	 Energy and cost efficient Suitable for medium scale Wide range of feedstock 	
> Hydrodynamic Cavitation	Developed and viable at industrial scale	Energy and cost efficientSuitable for large scale	
> Gamma Irradiation	■ POC ready and detail study to be performed *	 Energy and cost efficient Suitable for large scale Catalyst Free Moderate operating conditions 	
> Supercritical Fluid	Developing stage	Energy intensiveCatalyst free	
Plasma Assisted Intensification	■ Future plan*	— Catalyst free	

Advanced Technology Development @ CBBS

- Developed in-situ transesterification process for biodiesel production using Castor seeds.
 - The drawbacks of conventional processes addressed.
 - Process optimization using Process Intensification techniques (reduction in time and catalyst amount, improved yield, Industrially viable)
 - Preliminary studies shows around 50% reduction in overall cost of production compared to conventional process.
- Developed in situ transesterification process as a <u>novel</u> approach for biodiesel production using Gamma irradiated Castor seeds.
 - Gamma irradiation modifies the chemical structure of castor oil in seeds.
 - The use of catalyst can be substantially minimized/eliminated.

In situ Biodiesel production

- In situ process or reactive extraction differs from the conventional biodiesel production process in which the grinded oil-bearing seeds reacts with alcohol directly instead of reacting with pre-extracted oil.
- One single step extraction and transesterification process (alcohol acts as an extraction solvent and a transesterification reagent)

Oil seeds

Bio Diesel

- Advantages
 - Eliminates the requirement of two separate processes.
 - Reduces processing time.
 - Reduces cost associated with oil extraction.
 - Reduces overall solvent requirement.

Cont...

Conventional In-situ Transesterification Transesterification Seeds Seeds In-situ Crushing Transesterification Hexane extraction (Oil) **Downstream** Transesterification (Biodiesel) Downstream

Microwave Reactor System

Hybrid Reactor

- Efficient heating method
- Advantages are simplicity, low cost
- Heat is generated by molecular friction
- Reaction rate increases

Ultrasound Assisted Intensification

- CBBS is equipped with ultrasonic reactors of 20 kHz frequency.
- Ultrasonic energy can be utilized for faster production of biodiesel compared to conventional mechanical stirring technique.
- Advantages :
- Faster reaction (15 minutes) compared to mechanical stirring (2 hrs.)
- Low temperature reaction at atmospheric condition.
- Less energy consumption.

Hydrodynamic Cavitation

- Cavitations are generated by varying conditions of pressure and velocity with the help of geometries like orifice plates and venturi tubes.
- Temperature of the order 2000 K is generated at the micro level in cavitation bubble which is helpful for the reaction.
- Advantages
- 1) Better scale up possibilities
- 2) Higher yield in shorter reaction time
- 3) Less energy consumptions

Futuristic development

- ➤ Novel catalyst for glycerol free bio diesel production
- ➤ Develop plasma discharge, and germination based biodiesel production Technology
- ➤ Biomass to clean biofuels
- ➤ Algeal biodiesel production

Annexure III research outcome and publications

• List of PhD candidates

S. No	Name of the	PhD Title	Year
	Student		
1.	Kartik Thakkar	Some studies on investigation of in-situ	July2016
		transesterification for Castor oil methyl	onward
		Ester production using PI techniques	
2	Mrs. Anvita	Study on biodiesel production using hybrid	July 2013
	Sharma	reactor	onward

List of M. Tech. candidates

S. No	Name of the Student	M. Tech. Dissertation Title	Year
1.	Kartik Thakkar (Mechanical)	Development of Biodiesel Production Process using Vegetable oils & Engine Performance Testing	2016
2.	Pavit Bhaveshkumar Shah (Mechanical)	Biodiesel Production from Vegetable oils using Supercritical Method and Engine Performance Studies	2016
3.	Keyur V Shah (Mechanical)	In-situ Transesterification of castor seed oil for biodiesel production using hybrid reactor and engine performance studies	2017
4.	Jigar Patel (Mechanical)	Experimental investigation on catalyst free insitu biodiesel production process through germination	2017
5.	Ravi P. Chaudhari (Chemical)	Optimization of reaction parameters for biodiesel production from mahua oil using supercritical ethyl acetate and hexane as a co solvent	2017
6.	Bhavya Makhania (Chemical)	Investigation study of biodiesel production from non- edible oil using heterogeneous catalyst	2017
7.	Utkarsh Mistry	Biodiesel production from hydrodynamic cavitation using Castor seed oil	2018 onwards

•Sixteen B. Tech students have successfully completed B. Tech. projects in CBBS since July 2014.

Publications (Journals/Conferences)

- Kartik Thakkar, Keyur Shah, Pravin Kodgire, Surendra Singh Kachhwaha, 'In-situ reactive extraction of castor seeds for bio diesel production using the coordinated ultrasound-microwave irradiation: Process optimization and kinetic modeling" Ultrasonics Sonochemistry Journal 50, 2019, 6-14)(Elsevier publication, Thomson Reuters Impact factor = 6.0).
- Anvita Sharma, P Kodgire, S S Kachhwaha, H B Ragvendra 'Application of Microwave Energy for Biodiesel Production using Waste Cooking Oil', Materials Today: Proceedings, pp. 23064–23075, Nov 2018.
- Pravin Kodgire, Kartik Thakkar, Surendra Singh Kachhwaha, Seshasai Srinivasan 'Experimental investigation of in-situ biodiesel production from Castor seeds (Ricinus Communis) using combination of microwave and ultrasound irradiation', IAPE'19 Management chair, Director of Corgascience Limited, UK, pp. 1-8, 14 Mar 2019 (to be presented)
- A. Sharma, P. Kodgire, S. S. Kachhwaha, <u>Comparative analysis of mechanical stirring and process intensification techniques for biodiesel production using waste cotton-seed cooking oil</u> 12th International Conference on Thermal Engineering: Theory and Applications (ICTEA), February 23-26, 2019, PDPU, Gandhinagar, India. (WON BEST PAPER AWARD)
- Kartik Thakkar, Surendra Singh Kachhwaha, Pravin Kodgire, Seshasai Srinivasan, <u>Experimental Investigation on In-Situ Biodiesel Production using Hybrid Intensification and CI Engine Testing</u>, 12th International Conference on Thermal Engineering: Theory and Applications (ICTEA), February 23-26, 2019, PDPU, Gandhinagar, India.
- Utkarsh Mistry, Kartikkumar Thakkar, Pravin Kodgire, Surendra Singh Kachhawaha, <u>Biodiesel Production from Castor Seeds (Ricinus communis)</u> oil using <u>Hydrodynamic Cavitation</u>, 12th International Conference on Thermal Engineering: Theory and Applications (ICTEA), February 23-26, 2019, PDPU, Gandhinagar, India.

Publications (Journals/Conferences)(Contd.....)

- Kartik Thakkar, Keyur Shah, Pravin Kodgire, S.S Kachhwaha, H. B. Raghavendra, "<u>Experimental investigation of in-situ biodiesel production from Castor seeds (Ricinus Communis) using combination of microwave and ultrasound intensification</u>", accepted for oral presentation and Springer conference proceedings of ICAER 2017 to be held at IIT, Bombay (Dec., 2017).
- Pravin Kodgire, Kartik Thakkar, Keyur Shah, S.S Kachhwaha, H B Raghavendra, "Experimental investigation of in situ transesterification of castor seeds (ricinus communis) for methyl ester production using hybrid reactor" at ACS 254th Annual Meeting, Washington DC, USA, Aug 2017.
- Anvita Sharma, P Kodgire, S S Kachhwaha, H B Ragvendra, "<u>Application of Microwave Energy for Biodiesel production using Waste cooking Oil</u>", Proceedings of the Vth International Conference on Advances in Energy Research, ICAER 2015 December 15-17, 2015, IIT Bombay, India.
- A Kumar, P Kodgire, S S Kachhwaha, H B Ragvendra, "Process Design for Biodiesel Production using Reactive Distillation: Simulation Studies Using ASPEN", Proceedings of the Vth International Conference on Advances in Energy Research, ICAER 2015 December 15-17, 2015, IIT Bombay, India.
- Himanshu Choksi, Pravin Kodgire & Surendra Singh Kachhwaha; 'Biodiesel Production Using Supercritical Alcoholysis:
 <u>A Review</u>', Proceedings of International Conference on Chemical Industry (ICCI 2014); Bharti Publication, New Delhi (ISBN 978-93-81212-84-4), pg 1-6, 2014 (Won the Best paper presentation award).
- Anvita Sharma, Dr. Pravin Kodgire & Dr. Surendra Singh Kachhwaha; 'Review on Biodiesel Production using Process Intensification Techniques', P roceedings of International Conference on Chemical Industry (ICCI 2014); Bharti Publication, New Delhi (ISBN 978-93-81212-84-4),pg. 7-18, 2014.

CBBS Team @ PDPU

- Prof. T P Singh [Director (SoT)] (Head, CBBS, PDPU)
- Prof. Surendra Kachhwaha (In charge and Member CBBS)
- Dr Pravin Kodgire (Member, CBBS)
- Research Scholars: Mr Kartik Thakkar; Mrs. A Sharma; Mr. Utkarsh Mistry

THANKS!